
Optimization of Computations Used in Information Theory
Applied to Base Pair Analysis

UMBC REU Site: Interdisciplinary Program in High Performance Computing
Team members: Andrew Coates1, Alexey Ilchenko2

Faculty Mentors: Matthias K. Gobbert1, Nagaraj K. Neerchal1 Client: Patrick O’Neill3, Ivan Erill3

1Mathematics and Statistics, UMBC 2Mathematics, Case Western 3Biology, UMBC

Biologists use Information Theory as a
method of predicting where proteins will
bind to DNA. They specifically use en-
tropy and information content. Ex-
pected entropy is calculated in order to
determine information content. Its cal-
culation is very time consuming when
done exhaustively for medium and large
sample sizes, n, and also runs into mem-
ory problems. We wanted to develop
an improved algorithm to compute ex-
pected entropy. The main range of in-
terest is around 20 to 70 samples.

Problem Statement

There are four chemicals found at bind-
ing sites in DNA: Adenine (A), Thymine
(T), Cytosine (C), Guanine (G). Sets
of samples can be represented by motifs:

Sample Position
1 2 3 4

1 A T C G
2 T G G G
3 T C G G
4 A T C G
5 C G G T
6 A A G C

Base Pairs

• Entropy measures uncertainty:
E(x) = −

∑
p(x) log2 p(x).

• Information Content (IC) is the
loss of uncertainty, or the gaining
of information.

• IC = E(Hn) − Hx|y where
E(Hn) is expected entropy of n
samples and Hx|y is entropy of a
given binding site.

Information Theory

• Computing E(Hn) is an expensive
computation:
E(Hn) = −

∑
s∈∆n H(s)p(s)

• ∆n is the cross between ∆ with
itself n times.

• H(s) is computed with relative
frequencies of s.

• p(s) the product of genomic prob-
abilities to respective exponents

• This operation is of order O(4n).

E(Hn) Computed in O(4n)

• Partitions of n: all natural number
combinations adding up to n.

• Compositions of n: all permuta-
tions of the partitions of n.

• We strictly use length four com-
positions in the form (NA , NT ,
NC , NG).

• Multinomial coefficient compen-
sates for lost permutations.

E(Hn) = −
∑
v∈C

(
n

v1, v2, v3, v4

)
H(v)p(v)

The O(n3) Algorithm

• Exhaustive python code generated
the strings of each item in ∆n and
then iterated through each string
to compute E(Hn). Order O(4n).

• MATLAB used O(n3) algorithm.

• C used O(n3) algorithm.

Coding Languages

Work done by Andrew Coates (coates3@umbc.edu) and Alexey Ilchenko (axi48@case.edu).
For more information see Technical Report HPCF–2011–13 at www.umbc.edu/hpcf >
Publications.

Acknowledgment: This research was conducted during Summer 2011 in the NSF-funded REU
Site: Interdisciplinary Program in High Performance Computing (www.umbc.edu/hpcreu)
in the Department of Mathematics and Statistics at UMBC. The cluster tara in the UMBC High
Performance Computing Facility (www.umbc.edu/hpcf) is partially funded by the National
Science Foundation.

References and Acknowledgements

Run times in seconds
n python MATLAB C

O(4n) O(n3) O(n3)
1 < 0.0001 0.0007 0.0001
2 0.0003 0.0015 0.0002
4 0.0046 0.0053 0.0002
8 0.7603 0.0231 0.0008

13 863.8485 0.0576 0.0012
16 O.M 0.0963 0.0018
32 O.M 0.6016 0.0103
64 O.M 5.0046 0.0877

128 O.M 46.6464 0.5354
256 O.M 498.3383 3.6238

O.M = Out of Memory

• The MATLAB and C O(n3) code
ran faster and scaled better with
n than python O(4n) code.

• All values in range 20 to 70 can
be solved exactly under 1 second.

Results and Conclusions


