
Real Time Global Illumination Solutions to the
Radiosity Algorithm Using Hybrid CPU/GPU Nodes

UMBC REU Site: Interdisciplinary Program in High Performance Computing
Oluwapelumi Adenikinju1, Julian Gilyard2, Joshua Massey1, Thomas Stitt3

Graduate assistants: Jonathan Graf4, Xuan Huang4, Samuel Khuvis4

Faculty mentor: Matthias K. Gobbert4, Clients: Yu Wang1 and Marc Olano1
1CSEE, UMBC, 2Wake Forest University, 3Penn State University, 4Math and Stat, UMBC

In computer graphics, an integral portion of the
rendering timeline is solving for the light distri-
bution of a scene. When realism is important, a
solution involving global illumination – allowing
light rays to bounce before hitting the viewer –
is desired. One method that awards particularly
good results for diffuse surfaces is the radiosity
algorithm, despite the fact that this method is
computationally expensive – using it for near-
real to real time rendering is not generally prac-
tical. Starting with the existing computational
radiosity solver rrv, we determine how run-
times can be reduced through a combination
of multi-core CPU to massively-parallel GPU
architectures available in the cluster maya of
the UMBC High Performance Computing Fa-
cility (www.umbc.edu/hpcf).

Problem

Radiosity is defined as the total energy leaving a sur-
face (the sum of emitted and reflected energy) and is
given by:

Bi = Ei + ρi
∑N

j=1 BjFi,j for i = 1, 2,. . . ,N (1)

• Bi (radiosity) – the total energy leaving the
surface (radiosity) of the ith patch (energy/
unit time/unit area)

• Ei (emission rate) – the rate of energy leaving
the ith patch (energy/unit time/unit area)

• ρi (reflectivity) – the reflectivity of the ith
patch (unitless); the reflectivity depends on
the wavelength of light

• Fi,j (form factor) – the fraction of energy
emitted from patch j that reaches patch i
(unitless)

• N – the number of patches

The form factors Fi,j are properties of the scene.
The formulation can be found in HPCF-2014-15.

We want (1) as a linear system so that we can solve
it computationally. Rewriting (1), we have

b = e+ F b ⇐⇒ (I − F ) b = e

and after substitutingA = I−F , (1) can be rewritten
as a linear system

Ab = e (2)

which can be expanded to


1− ρ1F1,1 −ρ1F1,2 · · · −ρ1F1,N

−ρ2F2,1 1− ρ2F2,2 · · · −ρ2F2,N

.

.

.
.
.
.

. . .
.
.
.

−ρNFN,1 −ρNFN,2 · · · 1− ρNFN,N



B1

B2

.

.

.
BN

 =


E1

E2

.

.

.
EN

 .

Mathematical Background

Jacobi – The original code in rrv solves for b in (2) us-
ing a fixed number of iterations in the Jacobi method.
This can be physically thought of as one light bounce
per iteration, as illustrated visually in the following
flow chart:

To provide certainty that the method has actually
converged and to save iterations potentially, we
reimplement the Jacobi method to compute only
until an equilibrium bouncing of light is reached as
measured by a tolerance of 10−6 on the relative
residual.

BiCG-STAB – The Jacobi method can be
slow to converge. The BiCG-STAB method is an
alternative iterative method whose convergence speed
increases with iterations. It requires twice as much
work per iteration, hence might take less time for
complex problems that require a large number of
iterations with the Jacobi method.

Computational Methods

Runtime results were obtained for 4 scenes of var-
ied patch count and complexity. We see that the
scenes used were not complex enough to make ap-
parent the advantages of BiCG-STAB. Parallelization
on the other hand showed marked improvement with
run times dropping over an order of magnitude.

Computing Methods Jacobi vs. BiCG-STAB:
Patch Jacobi BiCG-STAB

Scene ID count iter runtime iter runtime
1 1312 8 0.009 3 0.010
2 3360 28 0.045 16 0.058
3 9680 36 0.410 17 0.435
4 17128 32 0.993 17 1.157

Distributive Computing with Jacobi Methods:
Scene ID Original Serial CUDA OpenMP

1 0.028 0.031 0.006 0.009
2 0.857 0.677 0.115 0.045
3 10.072 6.973 1.209 0.410
4 27.855 19.394 3.415 0.993

Runtimes in Seconds

CUDA – CUDA is NVIDIA’s library for leveraging
the massively parallel architecture of GPUs (graphics
processing units). GPUs are designed for SIMD
(single instruction multiple data) applications like
those used in solving (2). CUDA has an efficient
package (cuBLAS) for solving linear systems, but
since the system is composed of vector elements with
multiple values (arrays of structures), these methods
cannot be used. We implement a dot-product and
matrix-vector product for vectors of this type using
binary tree reduction and a simple axpby (a x + b y)
operation for vector scaling and addition.

OpenMP – OpenMP (Open Multi-Processing) is
an application programming interface that provides
simplified and cross-platform shared-memory par-
allelization. Memory is considered “shared” when
each worker (thread) shares it with all other workers,
unless marked worker-private – which is beneficial
here since the matrix A is large. With OpenMP,
portions of serial code are flagged to be run in parallel
by work distribution among available threads. We
utilize parallelization much like with CUDA to speed
up the matrix-vector, dot, and axpby functions.

Distributed Computing

Both computational methods and paralleliza-
tion were explored with the aim of near-real to
real time global illumination solutions to the ra-
diosity algorithm. Given the scenes we tested,
OpenMP and CUDA both show substantial run-
time improvements while the change from the
Jacobi method to the BiCG-STAB method ac-
tually resulted in increased runtime due to the
method’s complexity. It appears that global
illumination problems are not in general best
suited for mathematical reformulations, but
taking advantage of work distribution seems fa-
vorable no matter the scene complexity.

Conclusions

• For more results, see full technical report
HPCF–2014–15 at
www.umbc.edu/hpcf > Publications.

• rrv – Radiosity Renderer and Visualizer,
DUDCA.cz: http://dudka.cz/rrv

References

• REU Site: www.umbc.edu/hpcreu

• NSF, NSA, UMBC, HPCF, CIRC

Acknowledgments


