A GUI for Visualization and Preparing GCM Data for Use in SWAT

UMBC REU Site: Interdisciplinary Program in High Performance Computing Christopher Evans ${ }^{1}$, Abigail Gartrell ${ }^{2}$, Lauren Gomez ${ }^{3}$, Moise Mouyebe ${ }^{4}$, Darius Oxley ${ }^{5}$ Graduate assistant: Sai Kumar Popuri ${ }^{5}$, Faculty mentor: Nagaraj K. Neerchal ${ }^{5}$ Client: Amita Mehta, Joint Center for Earth Systems Technology (JCET), UMBC ${ }^{1}$ Hampden-Sydney College, ${ }^{2}$ U. of Maryland, College Park, ${ }^{3}$ Cal Poly Pomona, ${ }^{4}$ U. of Michigan, Flint, ${ }^{5}$ UMBC

Background

- The USDA-NIFA supports the endeavor to assess the impacts of natural decadal climate variability on agricultural yields in the Missouri River Basin (MRB).
- The UMBC-JCET team uses data provided by Global Climate Models (GCMs), specifically MIROC5.
- The GCM data is used to generate input to the Soil, Water Assessment Tool (SWAT), a modeling tool that predicts long term agricultural yields

Methods

- Develop GUI: Streamline modelling process of downscaling, run SWAT and visualize data
- Improve Accuracy: Implement Tobit Regression for precipitation
- Parallelization: Write routine using parSapplyLB to perform regression at $30,000+$ locations for 57 years of data

Map of average rain

References

- Full technical report: HPCF-2014-12 www.umbc.edu/hpcf $>$ Publications.
- Background picture taken from http://water.weather.gov/ ahps/rfc/rfc.gif
- Problem statement flow chart taken from Client project proposal

Results

Proportion of matched dry/wet days

Monthly average rain for each data set

Speedup for parallel regression

Acknowledgments

REU Site: www.umbc.edu/hpcreu, funded jointly by NSF, NSA, UMBC, HPCF, CIRC, CRCES

