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• pbdR is an R package used to implement
high-performance statistical computing on
very large data sets.

• Block cyclic arrangement is used in pbdR
(through ScaLAPACK) for distributed oper-
ations on large, dense matrices amongst par-
allel processes.

• Selection of block size and grid processor
layout greatly influence computational effi-
ciency.

In this work, we explore block cyclic distribution
by implementing the statistical method PCA.
We illustrate a large-scale PCA with an appli-
cation to protein movements, focusing on mo-
tional correlations.

Summary

Block Cyclic Distribution

Here a 9×9 matrix is block cyclically divided
with block size of 2×2 and processor grid
layout of 2×3. Each colored 2×2 partition will
be distributed to the process in the 2×3 grid
with the corresponding color.

SNP and its Applications SNPs are variations
that occur in a DNA sequence when a nu-
cleotide differs between paired chromosomes,
changing the amino acid sequence. These can
be analyzed through motional correlations.
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PCA
Principal component analysis (PCA) determines the directions of maximal variability in large dimensional data and is
widely used for dimensional reduction. PCA is implemented on the sample covariance matrix:
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S is positive semi-definite and therefore can be diagonalized: Λ = O′SO, where O is an orthogonal matrix. Each
row of O is an eigenvector of S. These eigenvectors are called principal components. Λ is the diagonal matrix of
eigenvalues of S. The number of significant eigenvalues determines the true underlying dimensionality of the data.

We analyze the effects of several factors of the PCA algorithm on computational speed:

• Vary the size of the n × k data matrix

• Vary block size and grid layout on a single node for constant n and k

• Extend study of block size and grid layout to multiple nodes

• Demonstrate real-world applicability

Methods

The left figure shows the predictible nature of the effects n and k have on efficiency. The center and right figures
show the effects of grid layout and block size on computational speed for a constant n and k.

ANOVA Results:

One Node Study Four Node Study
Source DF SS MS F SS MS F

Grid 3 0.0008 0.0003 3.0000 0.0007 0.0002 0.2593
Block 3 0.0393 0.0131 131.0000 0.1040 0.0347 38.5556

Residuals 9 0.0011 0.0001 0.0080 0.0009

These tables show ANOVA results for one node 8 processes on the left, and for four nodes 8 processes on the right.
Results show that block size has a clear effect on computational speed. 8×8 block sizes are the most efficient for
this n and k.

These figures show the level plot of Dr. Thorpe’s data before and after PCA and greying out all statistically non-
significant correlations. Note that relatively few correlations are statistically significant.

Results


