Parallelization for Fast Image Reconstruction using the **Stochastic Origin Ensemble Method for Proton Beam Therapy** UMBC REU Site: Interdisciplinary Program in High Performance Computing Fernando X. Avila-Soto¹, Alec N. Beri², Eric Valenzuela³, Abenezer Wudenhe⁴, RAs: Ari Rapkin Blenkhorn⁴, Jonathan S. Graf⁵, Samuel Khuvis⁵, Mentor: Matthias K. Gobbert⁵, Client: Jerimy Polf, Department of Radiation Oncology, UMD School of Medicine ¹Muskingum University, ²UMD College Park, ³CSU Channel Islands, ⁴CSEE, UMBC, ⁵Math & Stat, UMBC

Objective

We apply parallel computing techniques to the Stochastic Origin Ensemble (SOE) algorithm for the reconstruction of images of secondary gammas emitted during proton beam therapy. We use OpenMP, CUDA, and Intel Compil**UMBC** High Performance Computing Facility (hpcf.umbc.edu)

ers to optimize the C++ implementation of the algorithm on CPUs and a single GPU.

Proton Beam Therapy

The use of proton therapy for treating cancer has greatly increased over the past decade because of the advantageous properties of proton beams.

One Node with Two Eight-Core Intel E5-2650v2 Ivy Bridge CPUs

To test the SOE-based reconstruction code, we use a small test case with $\approx 15,000$ and a large test case with $\approx 380,000$ Prompt Gammas, with ≈ 40 mm³ voxel size and 1,000 iterations. We used an OpenMP multi-threading approach compiled with GNU.

Test case	1 thread	2 threads	4 threads	8 threads	16 threads	32 threads		
Wall clock time W_t in seconds								
Small	40	22	13	8	6	6		
Large	955	513	286	163	101	108		
Speedup $S_t = W_1/W_t$								
Small	1.00	1.82	3.08	5.00	6.67	6.67		
Large	1.00	1.86	3.34	5.86	9.45	8.84		

X-Ray Treatment

Proton Beam Treatment

Because of the uncertainties in the exact position of the distal dose gradient within the patient, a method of verifying the in vivo beam range is critcal.

SOE algorithm is an effective method for reconstructing images of a proton pencil beam from data collected using an ideal Compton camera. With a verification system, we can improve our ability to fully exploit the advantages of proton radiation therapy.

• Very good speedup on one node. Not effective to use more threads than CPU cores.

One NVIDIA K20 GPU with 2496 Computational Cores

NVIDIA CUDA (Compute Unified Device Architecture) for multi-threading on the GPU.

Test case	512 threads	1024 threads	2048 threads	4096 threads	8192 threads				
Wall clock time W_t in seconds									
Small	93	60	38	25	15				
Large	2061	1245	660	382	229				
Speedup $S_t = W_1/W_t$									
Small	1.00	1.55	2.45	3.72	6.20				
Large	1.00	1.66	3.13	5.40	9.00				

- Code successfully ported to hybrid CPU/GPU implementation!
- Very good speedup on GPU. Very effective to use more threads than cores.

• Mackin, Peterson, Beddar, Polf, Phys. Med. Biol., 2012 • Full technical report: HPCF-2015-27, hpcf.umbc.edu > Publications

REU Site: hpcreu.umbc.edu; NSF, NSA, DOD, UMBC, HPCF, CIRC