
Performance Studies of the Blossom V Algorithm
UMBC REU Site: Interdisciplinary Program in High Performance Computing

Changling Huang1, Christopher C. Lowman2, Brandon E. Osborne3, Gabrielle M. Salib4,
Graduate assistants: Ari Rapkin Blenkhorn4, Jonathan S. Graf5, Samuel Khuvis5,

Faculty mentor: Matthias K. Gobbert5, Clients: Tyler Simon6 and David Mountain6
1Rutgers U., 2UMCP, 3Austin Peay State U., 4CSEE, UMBC, 5Math & Stat, UMBC, 6Lab. for Phys. Sci.

To better understand the performance
capabilities of the Blossom V algorithm
and highlight potential approaches for
improvement, we conducted perfor-
mance studies for a variety of graphs.
We varied the number of nodes, graph
density, and the range of edge weights
and recorded the initialization time, to-
tal execution time, and total memory us-
age for each graph.

Objective

The Blossom algorithm was first
introduced in 1965 and has been incre-
mentally improved over time. The most
recent version, Blossom V, computes a
perfect matching of minimum cost of a
graph. Below are examples of perfect
matchings, with edges in the matching
highlighted in red.

A critical component of the algorithm
involves the use of blossoms. A blossom
is a cycle of the graph consisting of
2k+1 edges, exactly k of which belong
to a matching. Blossoms are shrunk
and expanded in order to perform
efficient searches on a reduced graph.
These operations are represented below.

Blossom V Algorithm

We recorded wall times for graphs with
various numbers of nodes n and graph
densities d. In the tables below, Init.
represents initialization time, which
includes updating optimization vari-
ables and assigning matchings. Total
represents total execution time of the
algorithm.

The results below illustrate the effects of
increasing graph density and increasing
the range of the edge weights.

Time in seconds for n = 215 nodes
with weights 1 to 100

d Init. (s) Total (s)
0.125 6.074 8.262
0.250 11.207 13.006
0.500 27.505 29.046
1.000 47.547 49.087

Time in seconds for n = 215 nodes
with density d = 1

Weight range Init. (s) Total (s)
1 to 102 47.547 49.087
1 to 104 729.372 878.405
1 to 106 2649.447 2670.155
1 to 108 2677.173 2700.346

We observed that the times varied for
different ranges of weights and inves-
tigated whether this was a matter of
magnitude. We scaled down the same
graphs by their maximum weights to ob-
tain smaller weights.

Scaling speedup (unscaled/scaled time)
for 215 nodes with density d = 1

Weights Speedup (I) Speedup (T)
10−2 to 1 0.786 0.792
10−4 to 1 0.858 0.914
10−6 to 1 0.920 0.924
10−8 to 1 0.943 0.945

Timing Results

For each graph where initialization time
and total execution time were recorded,
we also recorded total memory usage.

Memory used for n = 215 nodes

d Memory (GB)
0.125 7.251
0.250 14.498
0.500 28.991
1.000 57.981

There were no major disparities between
repeated trials of graphs with the same
number of nodes and edges, regardless
of the range of edge weights.

Memory Results

As graph density increases, initialization
time and total execution time increase.

As the range of edge weights increases,
initialization time and total execution
time increase.

Scaling down the edge weights has no
significant effect on initializtion time
and total execution time.

Memory usage largely depends on the
number of nodes and edges in a graph.

Conclusions

• Kolmogorov, Math. Prog. Comp., 2009

• Full technical report: HPCF–2015–26
hpcf.umbc.edu > Publications

References

REU Site: hpcreu.umbc.edu
NSF, NSA, DOD, UMBC, HPCF, CIRC

Acknowledgments


