Impact of Calcium Store Overload on Electrical Dynamics of Cardiac Myocytes

UMBC REU Site: Interdisciplinary Program in High Performance Computing Amanda M. Alexander¹, Erin K. DeNardo², Eric Frazier III³, Michael McCauley⁴, Nicholas Rojina⁵ Graduate assistant: Zana Coulibaly⁴, Faculty mentor: Bradford E. Peercy⁴, Client: Leighton T. Izu⁶ ¹Western Washington U., ²Wash.U. in St. Louis, ³La Salle U., ⁴Math&Stat, UMBC, ⁵UNC-Chapel Hill, ⁶UC Davis.

Objective

Electrical signaling in cardiac muscle cells triggers calcium (Ca^{2+}) release from the sarcoplasmic reticulum (SR) through Ca^{2+} release units (CRUs). CRU's can activate spontaneously under certain conditions, such as high SR load and increased CRU release probability, sometimes resulting in a large wave-like release. We use a mathematical model to explore the timing and organization of spontaneous Ca^{2+} release as this can lead to an irregular heart beat.

Behavior Classification

Measurements of calcium concentration along a single line in space in the cell were measured versus time, allowing us to group a dynamic into one of the following three classifications:

Voltage triggered Ca²⁺ influx from the extracellular space shifts the original spark dynamic to a wave

Biological Model

Changes in voltage differences across the cell membrane cause Ca^{2+} to enter the cytosol, triggering SR to release Ca^{2+} through CRU's. This begins the process of Ca^{2+} -induced- Ca^{2+} release (CICR), which results in Ca^{2+} binding to contractile proteins and a contraction of the heart.

Voltage Simulation Results

Conclusions

 Increasing SR calcium load leads to more calcium waves, with blowout when SR concentration is too high with higher SR calcium diffusion coefficient and CRU probability of release sensitivity.

Mathematical Model

The following system of PDE's is solved using the Finite Volume Method.

 $c_t = \bigtriangledown \cdot (D_c \bigtriangledown c) + \Sigma R_i$ $+ (J_{CRU} + J_{leak} - J_{pump}),$ $b_{i_t} = \bigtriangledown \cdot (D_{b_i} \bigtriangledown b_i) + R_i,$ $s_t = \bigtriangledown \cdot (D_s \bigtriangledown s) + \Sigma R_j$

Including Voltage

We implemented voltage by using a simplified version of the Morris-Lecar model scaled to oscillate with a period ~500ms.

$$c_t = \dots + J_{LCC} + J_{mleak} - J_{mpump},$$

$$V_t = \frac{\tau}{C} (I - g_L (V - V_L) -$$

- Adding buffers to the SR model makes waves less likely to occur when all other parameters are kept consistent.
- Increased depolarization of the plasma membrane leads to increased Ca²⁺ influx into the cell and thus triggers greater SR calcium release into the intracellular space.

References

- Full technical report: HPCF-2015-25 hpcf.umbc.edu > Publications
- Gobbert, M.K., (2008). SIAM J. Sci. Comput.
- Izu, L.T., W.G. Wier, C.W. Balke, (2011).

where the cell is modeled as a rectangu-

lar prism with a lattice mesh of CRU's.

 $g_{ca}m_{\infty}(V-V_{Ca})-g_{K}n(V-V_{K})),$

