Predicting Alzheimer's Disease with Microarray Gene Expression Data

UMBC REU Site: Interdisciplinary Program in High Performance Computing Trevor V. Adriaanse¹, Meshach Hopkins², Rebecca Rachan³, Subodh R. Selukar⁴, Graduate assistant: Elias Al-Najjar⁵ Faculty mentor: Kofi P. Adragni⁵, Client: Nusrat Jahan⁶ ¹Bucknell U., ²CSEE, UMBC, ³North Central College, ⁴UNC-Chapel Hill, ⁵Math & Stat, UMBC, ⁶James Madison U.

Predicting Alzheimer's Disease

Alzheimer's Disease (AD) is a fatal neurological disorder chiefly present in the elderly. AD has no cure and evidence points to a genetic link. With microarray data from [1], our goal is to find a relationship between gene expression and presence of AD. The three-stage process is: screening, sparse sufficient dimension reduction (SDR), and hierarchical clustering. We parallelize the existing R code to enhance execution speed and conduct a performance analysis.

Implementation

We adapted the works of [2] and [3] to implement our methodology in R. We parallelized our main function on the maya 2013 cluster using snow [4] and ran simulations as a performance analysis. Finally, we applied it to the AD data

Parallelization

Performance Study of Our Main R Function

Methodology

We begin with $X = (X_1, \ldots, X_p)^T$ gene expressions and Y the response variable, where Y = 0 if AD is not present and Y = 1 if AD is present. We use an inverse regression approach X|Ybecause of the data sampling scheme and we seek the most significant genes

set.

Results

Prediction Error for the 200 Most Significant Genes

Prediction Error Using the 49 Genes

Parallelization improved performance speed most substantially using one node with sixteen processes per node.

Conclusions Findings: • Three clusters of genes to predict AD

that can best predict the presence or absence of AD.

The high number of gene expressions (32312) and small sample size (79) motivates a SDR. A reduction $R : \mathbb{R}^p \rightarrow$ $\mathbb{R}^d, d < p$ is sufficient if $Y \perp X | R(X)$. Our method of dimension reduction is the Principal Fitted Component Model:

 $X_y = \mu + \Gamma \beta y + \Delta^{1/2} \varepsilon$

The parameter Γ gives the relationship between AD and gene, while Δ illustrates the interdependence of genes and $\Gamma^T \Delta^{-1} X$ is a SDR of X.

Our method is to first screen data with

that Best Predict AD

Prediction error is minimized for 49 predictors and 3 clusters.

	8028380	8062844	8096663	7937275	7985757
	8030448	8075637	8135172	8178561	8050060
Group 1	7950284	8098576	8170891	7960689	7963235
	8062880	8081620	8176230	7903507	7982564
	7974895	8051773			
	8039378	7905817	8028791	8002041	8037079
	8015835	7992447	8036252	8180371	7902435
Group 2	8041225	8123739	8014794	7899841	7931479
	8062796	8091452	7908867	7979663	8026155
	7981566 ⁻	7997352			
Group 3	7894596 7893808 7894185 8024436 8121130				

• Parallel implementation is most effective on one node with sixteen proceses per node

In the future we will extend our research by comparing our model with a logistic regression model to determine the efficacy of our methodology. Further, we will identify the biological relevance of our findings.

References & Acknowledgments

[1] Hokama M, Oka S, Leon J, Ninomiya T et al. <i>Cereb</i>
<i>Cortex</i> 2014.
[2] Adragni et al. Computational Statistics, to appear
2015.
[3] Adragni and Xi <i>Statistics</i> , 2015.
[4] Tierney et al. 2013.

REU Site: hpcreu.umbc.edu

NSF, NSA, DOD, UMBC, HPCF, CIRC